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A restricted walk of order r on a lattice is defined as a random walk in which 
polygons with r vertices or less are excluded. A study of restricted walks for 
increasing r provides an understanding of how the transition in properties is 
effected from random to self-avoiding walks which is important in our 
understanding of the excluded volume effect in POlymers and in the study 
of many other problems. Here the properties of restricted walks are studied 
by the transition matrix method based on the theory of Markov chains. A 
group theoretical method is used to reduce the transition matrix governing 
the walk in a systematic manner and to classify the eigenvalues of the 
transition matrix according to the various representations of the appropriate 
group. It is shown that only those eigenvalues corresponding to two 
particular representations of the group contribute to the correlations among 
the steps of the walk. The distributions of eigenvalues for walks of various 
orders r on the two-dimensional triangular lattice and the three-dimensional 
face-centered cubic lattice are presented, and they are shown to have some 
remarkable features. 

KEY W O R D S  ." Restricted walk  ; sel f -avoiding w a l k ;  transit ion matr ix ; 
group representations. 

Research partially supported by ARPA and monitored by ONR under Contract No. 
N00014-67-A-0398-0005. 

1 Institute for Fundamental Studies, Department of Physics and Astronomy, University 
of Rochester, Rochester, New York. 

2 Physics Department,  University of London King's College, London, England. 

183  

�9 1974 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this pub- 
lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher. 



184 F. T, Hioe and C. Domb 

1. I N T R O D U C T I O N  

The problem of self-avoiding walks on lattices, with its applications to the 
theory of  polymer configurations and to the theory of  the Ising and Heisen- 
berg ferromagnets, has been studied extensively for many years. 3 Precise 
analytic information about the asymptotic properties of self-avoiding walks is 
very limited3 ~ Much of  the information about the properties of  self-avoiding 
walks has been derived from the method of exact enumeration c~ and the 
method of Monte Carlo computations. ~5~ Of considerable importance is an 
understanding of how the transition in properties is effected from random to 
self-avoiding walks. In this respect, a good deal of  understanding has been 
gained from the virial expansion method (see, e.g., Ref. 6) and the transition 
matrix method37> The transition matrix method for the study of short-range 
excluded volume effects was initiated by Montroll. <8~ If  we define a restricted 
walk of  order r as a random walk in which polygons with r vertices or less 
are excluded, then a restricted walk of order r is a Markov process governed 
by a transition matrix with eigenvalues Air, A2 ...... ANt, N being the order 
of  the matrix. The behavior of  the number of  walks c,r of  n steps and the 
mean-square length of  walks of n steps (R~)  can be readily shown to be as 
follows: 

cn~ = al,,V1~ + a2T,V~, + ... + azerhnnr, ( R ~ , )  ~ b~n 

For large n the largest eigenvalue Air dominates and the behavior of  c,r 
becomes 

Cnr ,'0 azrh~r 

However, in the transition from the restricted to self-avoiding walks, n 
and r increase simultaneously, and since the order of  the transition matrix 
and hence the number of  eigenvalues increases rapidly with increasing r, the 
distribution of the eigenvalues and their individual contribution to c~r should 
be examined more carefully. In a previous paper (7~ we studied the distribution 
of  the eigenvalues of the " reduced"  transition matrix for walks of various 
orders on the two-dimensional triangular lattice and on the three-dimensional 
face-centered cubic lattice, and the following picture emerges from our 
numerical data. 

(a) The largest eigenvalue hl~ (which is always real) is distinct and well 
separated from the others. 

(b) The rest of  the eigenvalues are rather symmetrically distributed 
about the origin. 

(c) The contribution from az~h~ to c~ accounts for over 99c7o of the 
total contribution even when n is as small as r; significantly, the percentage 

3 See, e.g., Ref. 1. For a general review see Dornb. (~ 
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contribution from a l ~ r  to err increases as r increases due to the increasing 
symmetry of  the distribution of  the rest of  the eigenvalues with increasing r, 
with the result that they give a negligible net contribution to the value of  c . .  

(d) The largest eigenvalue satisfies approximately the relation 

a~, _~ ,~[1 + (g / , ) ]  

and the origin of  the n" term in the asymptotic formula c, ~_ n~ for the 
total number of self-avoiding walks of n steps is to be found in the relation 

c, _~ al~A~2...,h. -~ ~" 1-~ [1 + (g/r)] 
r = l  

Aside from the total number of n-step walks c,, another quantity of  
considerable interest in attempting to understand the transition from random 
to self-avoiding walks is the correlation between two steps separated by, say, 
t steps. To study the correlations among the steps, we must study the " fu l l "  
transition matrix for the walk. The transition matrix studied in Ref. 7 for 
the total number of  walks is a particular reduced form of  this full transition 
matrix, as will become clear in this paper. In Section 2 of  this paper a group 
theoretical method is given which is used to reduce the full transition matrix 
in a systematic way and to classify its eigenvalues according to the various 
representations of  the appropriate group. The reduced matrix studied in 
Ref. 7 for the total number of walks is shown to correspond to the "identity 
representation." In Section 3, we derive exact expressions for the correlations 
among the steps of a restricted walk in terms of the eigenvalues and eigen- 
vectors of the full transition matrix, and we show that only those eigenvalues 
corresponding to the identity representation and those corresponding to 
what we call the "maximal representation" of the group contribute to the 
correlations. The distribution of eigenvalues corresponding to these two 
representations for walks of  order r ~< 7 on the plane triangular lattice (for 
which the reduced transition matrices are of the order 260) and for walks of  
order r ~< 5 on the three-dimensional face-centered cubic lattice (for which 
the reduced matrices are of  the order 170) are presented in Section 4. It will 
be seen that the distribution of eigenvalues corresponding to the maximal 
representation has the same remarkable features as the distribution of eigen- 
values corresponding to the identity representation. The correlation between 
two steps separated by t steps is found to be principally characterized by the 
ratio (ASlT/AIT) e, where As1, and A1T are respectively the largest eigenvalues 
corresponding to the maximal and the identity representations; these also 
turn out to be respectively the second largest and the largest eigenvalues of the 
full transition matrix. The behavior of  the ratio ;~hT/;~T is examined and a 
conjecture is made concerning the limiting value of  this ratio as r -+ oo. 
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2. G R O U P  T H E O R Y  A N D  THE T R A N S I T I O N  M A T R I X  FOR A 
R E S T R I C T E D  W A L K  

To construct the transition matrix corresponding to a restricted walk of  
order r, we begin by considering all possible (r - 1)-step self-avoiding walks. 
Let us denote these walks by w(1), w(2),..., w(cr-1), where c,_1 is the total 
number of  (r - 1)-step self-avoiding walks on the lattice considered, and let 
us denote the number of walks after n steps ending in types w(1), w(2) ..... 
w(cr-1) by w~(1), w=(2) ..... wn(c,-1), respectively. Now the addition of  a 
further step to a walk of  type w,_l(1) in all possible ways leads either to 
some forbidden self-intersections, which we reject, or to a walk of type 
w,(k), or type w,(1), etc. Consideration in a similar way of  the addition of  a 
step to the types Wr-~(2), W,_ 1(3) ..... W,-I(C~-1) leads to a set of  recurrence 
relations which can be conveniently expressed by the matrix equation 

w, = Aw,_~ ( 1 )  

where the transition matrix A is of  order c~_ 1. The number of  n-step walks 
ending in types w(1), w(2) , . . . ,  w(c,_l) is then given by the components of  
w~ 

w~ = A~-'+lW,_I (2) 

The matrix A will be referred to as the full transition matrix corresponding to 
the restricted walk of the given order. Clearly A has the symmetry property 
of the lattice considered and we now wish to show how A can be reduced in 
a systematic way. 

First let us consider an example of  walks which exclude triangles as well as 
immediate reversals on the plane triangular lattice. Starting with all the 
possible two-step walks (c2 = 30), the corresponding matrix A can be 
constructed quite simply (A is a 30 x 30 matrix). Let us label the walks as 
follows: 

O 1 2 5 4 5 

a ..~.__~ ~ k k -+~  / 

c- ~- ~ V -h -7 A 

(3) 

so that __~t, for example will be denoted by b+(1), or to be more precise, we 
shall denote by b~+(1) the walk after n steps the last two steps'of which end 
in __,,,~ 
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By making the substitutions 

a(rn) = ~%ma(O), b + (m) = o ~ b  + (0), b -  (m) = ~o,mb- (0) 
(4) 

c+(m) = ~os~c+(0), and t - ( m )  = ~%mC-(O), 

where m = 0, 1,..., 5 and oJs = e 2~*~j6, s = 0, 1 , . ,  5, it is easy to see that 
A is effectively reduced to six 5 x 5 matrices. But now it is not at all obvious 
whether the matrices can be reduced further. We might expect that b + and 
b- ,  and c + and c - ,  would have some kind of  "reflection symmetry." It turns 
out that we can equate b + to b-  and c + to c-  only for co = 1 or - 1. For  other 
values of oJ the relation between them is not simple. 

To assist us in the search for the full symmetry of A, we draw upon the 
resources of  group theory. It is the useful characteristic of group theory that 
it provides us with a systematic calculus for exploiting symmetry properties 
to the fullest extent. We now describe how the method of group theory can 
be applied to the reduction of  A. 

Starting with an arbitrary function ~b, group theory tells us how to resolve 
the function into a sum of functions, each of  which belongs to a particular 
row of  some irreducible representation, by the use of  a projection operator 
(see, e.g., Ref. 9). Using the usual notations in group theory, a projection 
operator is defined by 

= D,, ( R ) O R  (5) 
R 

where OR is the symmetry operator corresponding to the element R of the 
group, D(U)(R) is the matrix corresponding to the/~th representation of R, 
n. is the degree of the/~th representation, g is the order of  the group, and 
the summation of the right-hand side is taken over all elements of  the 
group. The application of p(u) to any arbitrary function ~b projects out that 
part of  the function that belongs to the ith row of the t*th representation, 
that is, 

P,(")~ = ~h,<") (6) 

The significance of this result to the problem of reducing our transition 
matrix A will soon become clear. 

We now come back to the problem of  a walk excluding triangles on a 
plane triangular lattice. The walks given by (3) suggest that we should 
consider the symmetry group C6~. Denoting a 60 ~ rotation by o~, Table I 
gives the results when various symmetry operators of the group are applied 
to walks of types a(0), b*(0), b-(0), c+(0), and e-(0). The character table 
of group C6~ is reproduced in Table II. 
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Table I. Operation by Elements of Group C6v 

E C8(r C6(~o 5) C62(o~ 2) C62(~o 4) C63 <r,(0) <r,(~r/3) a,(27r/3) ~rn(~r/6) a~(37r/6) aa(5~r/6) 

ao az a5 a2 as aa ao a2 a~ al aa a5 
bo + bl + b5 + b2 + b4 + b3 + bo- b2- b4- bl- b3- bs- 
bo- bl- b~- b2- b~- bs- bo + b2 + b~ + bz + b3 + b5 + 
C 0 + C l  + C5 + C2 + C4 + C3 + Co - C2 - C4 - C1 - C3 - C5 - 

CO-  C 1 -  C 5 -  C2 - r  - C3 - CO + C2 + C4 + C l  + (73 + C5 + 

C6~ 

Table II. Character Table for the Symmetry Group C6v 

E C6 a C62(2) c6(2) ~r,(3) ~ra(3) 

A1 1 1 1 1 1 1 
A2 1 1 1 1 --I  - 1  
B2 1 --1 1 - 1  1 --1 
Bx 1 --1 1 - -1  --1 1 
E1 2 2 --1 - 1  0 0 
E2 2 --2 - 1  1 0 0 

Consider first the A1 representation. Since it is a one-dimensional 
representation, D[]I~(R) = X(AI~(R). Starting with an arbitrary 1 x 30 
vector having components  a(0),a(1) ..... a(5); b§ b- (O) , . . . ,  

b - (5); c + (0) ..... c § (5); c -  (0) ..... c -  (5), application o f  the projection opera tor  
P1 (~1> on this vector gives the following results (ignoring the numerical 
factor  n , / g ) :  

On a(0): 

Pz('h~a(O) = 2[a(0) + a(1) + a(2) + a(3) + a(4) + a(5)]. 

On b+(0): 

p~(Al>b+(0) = b+(0) + b§ + b§ + b§ + b+(4) + b+(5) 

+ b- (0)  + b- (1)  + b- (2)  + b- (3)  + b- (4)  + b-(5) .  

On c+(0): 

e~Al~c§ = c§ + c§ + c§ + c§ + c§ + c§ 

+ c-(0)  + c - (1)  + e- (2)  + c - (3)  + c - (4)  + c-(5).  
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We readily see that 

PI(APa(O) = plcA~a(1) . . . . .  pl(A~)a(5) 

Pl('q~b + (0) = Pl('q~b + (1) . . . . .  P l ( ~ b  + (5) 

= Pl (a~b- (O)  = PI(A~b-(1) . . . . .  P l ( ~ b - ( 5 )  (7) 

pI(AI~c+(0) . . . . .  pI~AI~c + (5) 

= PI(A1)c- (0) . . . . .  PcA1)c- (5) 

This means that the components of  the eigenvectors of  A corresponding to 
the A1 representation must take the form given by (7). 

Conversely, by making the substitutions 

a(1) = a(1) . . . . .  a(5) 

b+(0) = b + 0 )  . . . . .  b+(5) 

= b - ( O )  = b - ( 1 )  . . . . .  b - ( 5 )  (8)  

c+(O) = c+(1) . . . . .  c+(5) 

= c - ( 0 )  = c - ( 1 )  . . . . .  c - ( 5 )  

we should be able to obtain all the eigenvectors corresponding to the Az 

representation. But these substitutions also effectively reduce the 30 x 30 
matrix A to a 3 x 3 matrix. If  we consider in a similar way other representa- 
tions, we are then provided with a systematic calculus for obtaining a set of 
reduced matrices the eigenvalues of  which exhaust all possible eigenvaluesof 
A (it will be noted that the eigenvalues corresponding to the E representations 
are doubly degenerate). It should be pointed out that in general the set of 
reduced matrices can be further reduced due to t h e "  symmetry of constraints" 
which arises, because as far as excluding polygons of up to r vertices is 
concerned, some different types of  walks may be considered as equivalent. 
Details of  this kind of  symmetry will not be discussed here. 

It is now clear that this method can be applied to walks of any order. 
For  walks on other lattices the appropriate symmetry group must be con- 
sidered. For  example, for walks on the square lattice the symmetry group 
C4~ must clearly be considered, and the general result in this case is very 
similar to that for the plane triangular lattice. The usefulness of the group 
theoretical method described above becomes more apparent and striking 
in the three-dimensional case, for while the substitutions, Eq. (4), for the two- 
dimensional case might have been guessed at without using group theory, 
the appropriate substitutions for the three-dimensional case, aside from the 
identity representation, are difficult to conceive intuitively. 

The group theoretical method which we just outlined can be described 
more generally. Let us denote a particular type of walk by a(1), and let a set of 
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symmetry operators OR~, OR2 ..... OR~ of a group G of g elements generate 
all its possible orientations, namely OR~a(1) = a(k), k = 1, 2 ..... g. Defining 
a projection operator by Eq. (5), and denotingP~r by P~ and D~ ) b y D ,  for 
convenience of  notation, we write 

P~a(1) = Du(RI-1)OR~a(I) + Du(R2-1)OR2a(1) +. . .+ Du(Rg-1)ORa(1) 

P,a(2) = D,(R~-I)OR~a(2) + D,(R2-1)OR~a(2) +. . .+ D,,(Ro-t)ORa(2) 
�9 . .  ( 9 )  

P~a(g) = D,(RI-1)OR~a(g) + D~(R2-~)OR~a(g) +. . .+ Du(Rg-1)ORoa(g) 

I f  in P~a(p) and P~a(q), say, we find 

then 

On~,a(p) = OR,a(q) 

OR~OR, = O~.ORq (10) 

Suppose that the matrix representation D(R~), i = 1, 2,..., g, has the 
property that every row and column of the matrix has only one nonzero 
element; then if D~(R~,-1) ~ 0 and D,(R,,-1) ~ O, we have 

D.(R,,- 1) D.(R.Rq- 1R -1) 1) 
D,(R,,- 1) = D,,(R,- 1) = (11) 

which is independent of  u and v. We then find that P~a(p) is simply related to 
P~a(q) by 

P~a(p) = D,,(RpRq_ I) (12) 
P~a(q) 

The general procedure for finding the appropriate substitutions for our 
matrix reduction is therefore as follows. 

We start with a(1) and " re l a t e "  all those a(m) for which Du(Rm) ~ 0 by 
the relation 

P~a(m) = Du(Rm)P~a(1) (13) 

Suppose D,(R -1) = 0 for R = R~I, R~ 2 ..... R~h; then we start again with 
a(il) and consider 

g 

P,a(il) = ~ D,(Rk-  1)OR~,a(il) (14) 
l c = 1  

It  is easy to show that P~a(il) has no nonzero term in common with any of the 
nonzero terms of P~a(1), for if in (14) we have OR;a(il) =- On,,OR~a(1) = one 
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of the nonzero terms appearing in P~a(1), a(s) say, with D~(Rs -~) r O, then 
OR~OR,1 = ORe and O~  = OR~O~. But since D , ( R ~ )  = 0 by assumption, 

and D(R~), i = 1, 2 ..... g, has the property that every row and column of 
the matrix has only one nonzero element, then D~(R~) = 0; hence Du(Rp) = 
0 and D~(Rv -~) = 0 and the term containing a(s) does not appear in Eq. (14). 
Continuing in this way, the set of  P~a(rn), m = 1, 2,..., g, will be subse- 
quently divided into one or more classes whereby the members in each of the 
classes are simply related to each other. 

It becomes clear that the possibility of the existence of  a simple substitu- 
tion such as Eq. (4) depends on whether for the given representation of  the 
group a matrix representation can be found such that for every element of the 
group the matrix has the property that every row and column has only one 
nonzero element. I f  this is the case, we say that the given representation of  the 
group can be truthfully represented. It is known that every representation of  
the crystal point groups can be truthfully represented. The situation, however, 
is less clear regarding a general symmetric group (every one-dimensional 
representation of a group is, of  course, a truthful representation). 

3. C O R R E L A T I O N S  A M O N G  T H E  STEPS 

Consider a walk of n steps and let us denote the individual step vectors 
(of unit length) by ul, u2 ..... u,. If  the vector from the origin to the endpoint 
of the walk is denoted by R,  say, then 

Rn = Ul q- U~ q - - . . +  Un (15) 

The correlation (u~uj) between the ith and j th  steps is defined by 

(u,us), ,  = (:~ u,.u~)/c,,  (16) 

where the summation of the scalar product of the vectors u, and uj is taken 
over all possible n-step walks of  the given order, and c~ is the total number 
of  n-step walks of the given order. For  an unrestricted random walk all 
(uguj)~ = 0 for i r j .  For  walks excluding reversals it is easy to show that 
(usus+t)~ = 1 / ( q -  1) t, t >~ 1, where q denotes the lattice coordination 
number. For a restricted walk of order r (/> 3) the correlation can be expressed 
in terms of the eigenvalues and eigenvectors of the full transition matrix 
corresponding to the walk, which we now wish to show. 

Our problem is to find the number of n-step walks the sth step of  which 
ends in type l, say, and the (s + t)th step of  which ends in type rn, say. If  this 
number is c,(s, s + t), and if the sth step vector ending in type l is expressed 
in Cartesian coordinates by (xs(l), ys(l), zs(l)) and the (s + t)th step vector 
ending in type m is expressed by (x~+t(m), y~+t(m), z~+t(m)), then the correla- 
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tion between the sth step and the (s + t)th step is defined by 

<u,u~+t>, = c, -1 ~ ~ c,(s, s + t){x,(1)xs+t(rn) + ys(1)y~+t(m) + z,(1)z,+t(m)} 
, ~ (17)  

where e, is the total number of n-step walks. 
Let us first consider the case when s >/ r - 1 and s + t > r - 1, where 

r is the order of  the finite walk. We bear in mind that when a walk of order r 
is considered we start by considering all possible (r - 1)-step walks. 

Let w~ be the number of walks at the sth step. w, can be expressed in 
terms of the eigenvalues A~ and the right-hand eigenvectors ~ and the left- 
hand eigenvectors d A of  A by 

w. = ~,  c,  at,l,, (18)  
i 

where 

C, : Wr_ l '~d)q  "r-1 

Let w~ (~ denote the vector obtained from w~ by putting all its components 
zero except the lth. Then if we express w, (~) in terms of  Ak and ~bk, we have 

N 

w~ (z) = ~ d~hflgp~ (19) 
/ c = l  

where 

i 

[we have denoted t h e / t h  component of  a vector V, say, by V(/)]. Starting 
with walks the sth step of which ends in type l, the numbers of walks at the 
(s + t)th step ending in various types are given by the components of  the 
vector Atwfl ). Thus 

k= ] .  = 

If  we pick out the walks ending in type m, then 

N 

(Atw~('))' m) = ~ f~)t~+tdi,;~ (21) 
k = l  

where 

~p~(m) (A~w,~))(rn) = q~,(/) C~a,s~,,(1) a;~dm) A = ~ + ~  ~-~z~-r = 1 

We now start with walks the (s + t)th step of which ends in type m (the sth 
step of which ends in type l) and obtain the numbers of walks after n = 
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s + t + q steps ending in various types by multiplying (Atw])) (m) by A q, that 
is 

N Aq(AtwsU))(m) = ~ fk2tks+t+q~P~ 
/~=J. 

= ~=1 ~ t~k(m)aeq~k 71= d?,(l C{;h'+~(l A, tqbp(m) (22) 

This gives the numbers of  walks after n steps ending in various types, the sth 
step being of type l and the (s + t)th step being of type m. The sum of all its 
components is then the number c,~(s, s + t) we require. 

For  s/> r - 1 and s + t > r - 1 the step vectors are x~(l) = x,+t(l) = 
xr-1(l), and similarly for y and z, i.e., the step vectors are defined by the last 
steps of all the ( r  - 1)-step walks which specify the various endings of  the 
walks. The correlation between the sth step and the (s + t)th step when the 
total number of steps is n is therefore given by 

<[u.e.+t}.=.+t+. = { ~  ~ [~ q~{(m),V'(l.*)][~. ,:(l),~/q~,(rn)] 

x C~h~  ~ f o r  s > i r -  1, s +  t > r - 1  

(23) 

where for simplicity we have denoted the components of the ( r  - 1)th step 
vector of the walk of  type l by x(l), y(1), z(l). 

If  s < r - 1, the formula giving the distribution of  walks ~{ C~1:qb~(I) 
is no longer valid. But if s + t > r - 1, we may very well start off with the 
( r  - 1)-step walks and simply replace formula (23) by the following one: 

x (C,h~n) -1 for s < r -  I, s +  t > r -  1 (24) 

where xs(1), y~(l), and zs(l) are now defined by the sth step vectors of the walk. 
Since s + t > r - 1, then z(m) are defined as before by the last steps of  all 
the ( r  - 1)-step walks. 
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If s < r - 1 and s + t ~ r - 1, we may again begin by considering 
all (r - 1)-step walks and then obtain the number of walks after n steps the 
(r - 1)th step of which ends in type /, say. Sinces < r - 1 ands  + t ~< r - 1, 
this is equivalent to saying that we want to obtain the number of  walks after 
n steps, the sth step of  which ends in type t, the (s + t)th step of  which also 
ends in type 1. Thus we have 

= ( 2 5 )  
i 

N 

k = l  

Therefore 
(26) 

^~-~r- l~,~z~ ~ (27) �9 - ,  , , r - 1  = = q, (l 
~=1 ,'i;=1 " 

The correlation is therefore given by 

x [xs(l)x~+t(l) + ys(l)y~+t(1) + z~(l) z~+,(/)]~ 
. )  

x C~A~ ~ for s < r - 1 ,  s + t < < . r - 1  
(28) 

where x~(l), y~(l), z~(l) and x~ +t(/), Y~ +t(l), z~ +t(l) are defined respectively by 
the sth and (s + t)th steps of the walk. 

We have thus derived the exact expressions for the correlation between 
any two steps in a restricted walk of order r [Eqs. (23), (24), and (28)] in 
terms of  the eigenvalues and eigenvect0rs of  the full transition matrix A 
corresponding to the walk. We now wish to show that not all eigenvalues of  
A contribute to the correlations. In fact we have deliberately labeled the 
summations over the eigenvalues by two different indices i a n d j  in Eqs. (23), 
(24), and (28) and we wish to show that (a) the summation ~ need only be 
taken over the eigenvalues corresponding to the identity representation, and 
(b) the summation ~j need only be taken over the eigenvalues corresponding 
to the "max imal"  representation, which is the E representation for group 
C~, the E~ representation for group Cs~, the F~ representation for group O, 
and the F~ -~ representation for group Oh. The eigenvalues and eigenvectors 
corresponding to other representations of  the group are, as far as the 
correlations among the steps of  the walks are concerned, completely 
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irrelevant. To show this, let us first consider a two-dimensional case such 
as the plane triangular lattice. The components of the eigenvectors are of 
the form (a, o~sa, r o~,Sa, w~4a, r b, o~,b, w,2b, r cos~b, ~o~Sb;...), 
where r = e 2~/6. The first and the third brackets of (23) involve the sum 
over all components (1. ~ )  and C~ = (1-qJ~) and it immediately follows that 
only those eigenvalues corresponding to the identity representation (r = 1) 
contribute, because 

5 5 

oJ~t= ~ e 2''~/6 = 0 if s r 0 (29) 
~ = 0  t = 0  

To show that the second bracket [~. ~j(/)hjt+j(m)] need only be summed 
over the eigenvalues corresponding to the E1 representation, let us rearrange 
the sum in (23) and consider the sum 

~(m)x(m)+ j(m) (30) 
rtt 

where i, as we have just shown, refers to the eigenvector corresponding to 
the identity representation which is of the form (a, a, a, a, a, a; b, b, b, b, b, b; 
...). From the relation 

5 

~e2"~t~16cos(2crt/6) = 0 unless s = 1 or - 1  (31) 
t = 0  

it readily follows that the summation over j need only be taken over the 
eigenvalues corresponding to the E1 representation (r = e 2~/8, oJ 5 = e-2~j6). 

It is clear that the relations (29) and (31) are connected with the orthogo- 
nality of different representations of a group. In Eq. (30), for example, one sees 
that only those ~j(m) whose components " t ransform" in the same way as the 
components of x(m) give a nonzero contribution. The meaning of the maximal 
representation of a group also becomes apparent: It is the representation that 
"generates" all the possible orientations of a particular type of walk. 

Generally, let us consider a particular type of walk a(1), and let a set of 
symmetry operators OR~, OR~,..., O~, of a group G of g elements generate 
all its possible orientations, namely ORka(1) = a(k), k = 1, 2,..., g. If  we 
consider 

~, dd,(m)x(m)~(m) (32) 
rn 

where the sum is taken over all possible orientations of a particular compo- 
nent, then since q~,(1) = ~,(2) . . . . .  O?,(g), (32) becomes 

g 

q~(1) ~ x(m)+t(m ) (33) 
r a = l  
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If  d~j belongs to the / th  row of the t~ representation, say, then 

(33) becomes 

g 

dpj(m) = (nu/g) E D~)(R~I)OR~ a(m) (34) 
/ e = l  

(nu/g)d?~(1) x(m) D~f)(R; 1)On~a(m) (35) 

Let us first collect the term containing a(1), say, in Eq. (35). The coefficient 
of  a(1) is readily seen to be given by 

[n~,~,(1)/g] ~ x(rn)D~?)(Rm) (36) 
m = l  

It follows from the orthogonality relation 

that (36) is zero unless t~ corresponds to the maximal representation of the 
group [which is the representation that generates all the possible orientations 
a(1), a(2),..., a(g)]. Similarly, by collecting the terms containing a(2), a(3), 
.... a(g) and noting that D(~(R~), i = 1, 2 ..... g, are truthful matrices, it 
can be readily shown that only those eigenvalues corresponding to the 
maximal representation of  the group contribute to (32). That only the eigen- 
values corresponding to the identity representation contribute to (1. +~) and 
C~ = (1-q~) can be readily proved in a similar fashion. 

4. D I S T R I B U T I O N  OF E I G E N V A L U E S  

The various results and formulas derived in the preceding sections are 
exact. To proceed further, we must consider the eigenvalues corresponding to 
the identity and the maximal representations. The distributions of  eigenvalues 
corresponding to the identity representation have been studied in Ref. 7 for 
walks of various orders on the plane triangular and fcc lattices, and the 
remarkable features of  these distributions were already summarized in the 
introduction of this paper. The largest eigenvalue, as was pointed out, is not 
only well separated from the others, but also predominates over the rest of 
the eigenvalues since these are distributed symmetrically about the origin. 
If  we replace the summation ~ in Eq. (23) by the largest term alone, the 
expressions for the correlations simplify considerably and <usu~+t>. becomes 

< u s u ~ + t > . ~ b j ( ~ f l h l )  t for s>/  r -  1, s +  t > r -  1 (37) 
J 
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where ~1 is the largest eigenvalue corresponding to the identity representation 
(which is also the largest eigenvalue o f  the full transit ion matrix corresponding 
to the walk) and 

bj = x~.y,z [~  ,~(m)x(rn).,(m)][~ d~,(l)x(l),~(l)] (38, 

The summat ion  ~ is taken over the eigenvalues corresponding to the 
maximal representation. Remember ing  the dependence on r, the order  o f  the 
walk, we write 

<u~u,+t),~(,.) z ~ bit(air/hiT)', s /> r -- 1, s + t > r -- 1 (39) 
] 

I t  should be remembered that  the eigenvalues corresponding to the maximal 
representation are doubly  degenerate in two dimensions and triply degenerate 
in three dimensions. I f  the two steps are separated by a large number  o f  steps, 
the correlat ion <u~us+t)~(o is clearly given by 

<UsUs + t)n(r) ,~ b hr( Ahr/ Azr) t (40) 

where '~hT is the largest eigenvalue corresponding to the maximal  representa- 
tion. The question naturally arises as to how the largest term in (39) accounts 
for the total contr ibut ion to the correlat ion when t is small. The distribution 
o f  eigenvalues corresponding to the maximal representation, plot ted in a 
complex plane, is found to show a certain pat tern c o m m o n  to all the lattices 
and to all r we have studied. The eigenvalues corresponding to the E1 repre- 
sentation for  walks o f  order r = 5 on the plane tr iangular lattice and the 
eigenvalues corresponding to the F~ (-) representation for walks o f  order 
r = 4 are given in Tables I I I  and IV, and they are plot ted in Figs. 1 and 2. 

Table III. Eigenvalues Corresponding to the Ez 
Representation for Walks of Order �9 = 5 on the 

Plane Triangular Lattice 
ii i 

2.668007 0.401820 + 0.576490i 
0.500000 + 0.866025i 0.401820 - 0.576490i 
0.500000 - 0.866025i -0.652150 + 1.039107i 
0.393602 + 0.706476i -0.652150 - 1.039107i 
0.393602 -- 0.706476i --0.724073 + 0.705563i 
0.837042 + 1.180631i -0.724073 - 0.705563i 
0.837042 - 1.180631i -0.870251 
0.884545 + 0.421829i - 1.084904 
0.884545 - 0.421829i -- 1 
0.002788 + 0.891345i -- 1 
0.002788 -- 0.891345i 
and four small complex eigenvalues close to the origin 
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Table IV. Eigenvalues Corresponding to the / : l -  
Representation for Walks of Order r = 4 on the 

fcc Lattice 

3.527318 0 .835595  + 0 .399451 i  

0 .410592  + 1 .792721i  0 .835595  - 0 .399451 i  

0 .419592  -- 1 .792721 i  0 .887667  + 0 . 1 6 6 1 4 9 i  

- 1 .498032  + 0 . 4 0 4 8 9 5 i  0 .887667  -- 0 .166149 i  

- 1 .498032 - 0 . 4 0 4 8 9 5 i  0 .007733  + 0 .948202 i  

--  1 .114717 + 0 .681990 i  0 .007733 - 0 .948202 i  

--  1 .114717 - 0 . 6 8 1 9 9 0 i  0 .093972  + 0 .746236 i  

0 .937353  + 0 . 8 0 3 7 2 6 i  0 .093972  -- 0 .746236 i  

0 .937353  - - 0 . 8 0 3 7 2 6 i  - -1  

1 .385121 - - 0 . 0 6 7 4 2 6  + 0 .461243 i  

--  1 .209516 + 0 .210059 i  - - 0 . 0 6 7 4 2 6  - 0 .461243 i  

- 1 .209516 -- 0 .210059 i  0 .373989  

- - 0 . 4 2 6 4 3 5  + 0 . 1 9 9 0 7 2 i  

- - 0 . 4 2 6 4 3 5  -- 0 .199072 i  
i 

- 2  

Fig .  1. D i s t r i b u t i o n  o f  e i g e n v a l u e s  c o r r e s p o n d i n g  to  t h e  Ez r e p r e s e n t a t i o n  fo r  w a l k s  o f  

o r d e r  r = 5 o n  t h e  p l a n e  t r i a n g u l a r  l a t t i c e .  

I 
3 

Fig .  2. D i s t r i b u t i o n  o f  e i g e n v a l u e s  c o r r e s p o n d i n g  to  t h e  F~-  ) r e p r e s e n t a t i o n  f o r  w a l k s  o f  
o r d e r  r = 4 o n  t h e  fcc l a t t i ce .  
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Fig. 3. Distribution of eigenvalues corresponding to the A~ representation for walks of 
order r = 5 on the plane triangular lattice. 

I 
-3  

.3 

�9 I t �9 
3 Io 

Fig. 4. Distribution of eigenvalues corresponding to the A~ representation for walks of 
order r = 4 on the fcc lattice. 

These distribution diagrams are seen to be strikingly similar to the distribu- 
tions of  eigenvalues corresponding to the identity representation, which are 
shown on the same scale in Figs. 3 and 4. They show the remarkable features 
characterized by (a) the largest eigenvalue is real, distinct, and well separated 
from the others, and (b) the rest of  the eigenvalues are rather symmetrically 
distributed about the origin. This suggests that the contribution to the 
correlation (u~us+~)~r~ in Eq. (39) comes predominantly from the largest 
eigenvalue in j even for small t. This is indeed supported by our available 
numerical data. The correlations among the steps of  a restricted walk of  order 
r are thus characterized by the ratio Abe/Air. At this point one naturally 
suspects that Ah~ is the second largest eigenvalue of  the full transition matrix. 
While the proof  that Zl~ is real and is the largest eigenvalue of our nonnegative 
full transition matrix follows immediately from the Peron-Frobenius theorem 
(see, e.g., Ref. 10), a rigorous proof  that Ah~ is real and is the second largest 
eigenvalue of our full transition matrix is lacking, although our numerical 
data do suggest that this is the case. The distribution of eigenvalues corre- 
sponding to every representation of the full transition matrix for walks of  
orders r = 4 and 5 on the plane triangular lattice is presented on the same scale 
in Fig. 5. It is interesting to note that none of the distribution of eigenvalues 



200 F.T .  Hioe and C. Domb 

o ~  

"s  

"1 
�9 I 

- J 

b 

�9 A I 

A z  

Bn 

B2  

I 

�9 e i �9 

r : 4  

.!.- 
/ �9 | �9 
~ �9 E I 

i 

�9 eO!  �9 
�9 L �9 

- E z 

r~5 

Fig. 5. Distributions of eigenvalues corresponding to all representations (A1, A2, B~, B2, 
El, and E2) of the full transition matrix for walks of orders r = 4 and 5 on the plane 
triangular lattice�9 

corresponding to representations other than the A1 (identity) and E1 (maximal) 
representations has a distinct eigenvalue well separated f rom the others. 

Let us now consider the ratio hilt/Air, which characterizes the correla- 
tions, and consider its dependence on r. The values o f  h~lr/hlr as well as the 
values o f  h~r and hj.~r up to r = 7 for walks on the plane triangular lattice 
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Table V. Values of Air, Ajar, and l~r/Alr for 
Plane Triangular Lattice 

ii 

r Alr AJir AJlr/Alr 

1 6.000000 0.000000 0.000000 
2 5.000000 1.000000 0.200000 
3 4.645751 2.000000 0.430501 
4 4.506407 2.426253 0.538401 
5 4.433593 2.668007 0.601771 
6 4.386422 2.843906 0.648343 
7 4.353059 2.982805 0.685220 

Table VI. Values of Azr, Ajlr, and Ajlr/Alr for 
the fcc Lattice 

i 

r Air Ajlr AjirlAir 

1 12.000000 0.000000 0.000000 
2 11.000000 1.000000 0.090909 
3 10.656854 2.485584 0.233238 
4 10.489137 3.527318 0.336283 
5 10.392318 ~ 4.36 ~ 0.42 

(for which the reduced transit ion matrix corresponding to the E1 representa- 
t ion is o f  order 260) and up to r = 5 for walks on the fcc lattice (for which the 
reduced matrix corresponding to the El-)  representation is o f  order  170) are 
presented in Tables V and VI, and they are plotted against 1/r in Fig. 6. 
I t  will be observed that  the values o f  Ajlr/Alr increase rather rapidly as r 
increases. Using the procedure developed by D o m b  and Sykes, (11) let us 
consider the increasing sequence o f  AjlT/),~r against 1/r and take the successive 
linear extrapolations and examine the points where these extrapolations cut 
the Ajlr/A~r axis (corresponding to r = oo). For  the plane triangular lattice 
the intercepts are found to be 0.400000, 0.891503, 0.862101, 0.855251, 
0.881203, 0.906482 ..... and for the fcc lattice the intercepts are 0.181818, 
0.517896, 0.645418, 0.75 ........ These values appear  to us to be approaching one 
as r ~ or, which, as is well known,  would signify the onset o f  long-range order. 
Since it is o f  considerable importance to know whether the limit o f  Ajxr/Alr as 
r ~ oo is really equal to one or  less than one, we believe that more data 
would be helpful in deciding this point. 
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Fig. 6. Plots of ~JZr/2tZr VS. 1/r for the plane triangular lattice and the fcc lattice. 
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